Radian and Degree Measure (Section 4.1)

Common Degree Measures of Angles

1. One full revolution corresponds to _____ degrees.

2. Fill out the common degree measures on the circle below.

Converting Between Degrees and Radians

3. One full revolution is _____ radians or _____ degrees. This leads to the

following equations: ______ and _____.

Conversion Factors that are Equal to 1							
	$\frac{\pi}{180}$	and	$\frac{180}{\pi}$				

Example 1: Convert from degrees to radians.

a) 135 degrees b) 540 degrees c) -270 degrees

Example 2: Convert from radians to degrees.

a)
$$-\frac{\pi}{2}$$
 radians b) 2 radians c) $\frac{9\pi}{2}$ radians

Radian and Degree Measure (Section 4.1)

Complementary and Supplementary Angles Complementary Angles: ______ Supplementary Angles: ______

Example 3: Find the complement and supplement of each angle.

a) 72 degrees b) 148 degrees c) $\frac{2\pi}{5}$ rad d) $\frac{4\pi}{5}$ rad

Arc Length $s = r\theta$ Linear Speed Linear speed $= \frac{arclength}{time} = \frac{s}{t}$

Example 4: A circle has a radius of 4 inches. Find the length of the arc intercepted by a central angle of 240 degrees.

Example 5: The second hand of a clock is 10.2 cm long. Find the linear speed of the tip of this second hand.

Radian and Degree Measure (Section 4.1)

Class Work

1. The second hand of a clock is 9 cm long. Find the linear speed of the tip of this second hand as it passes around the clock face.

2. A circle has a radius of 27 inches. Find the length of the arc intercepted by a central angle of 160 degrees.

3. Determine two coterminal angles in radian measure (one positive and one negative) for each angle.

a)	$\frac{\pi}{2}$ b	b)	2π	c	5π
	6	0)	3	()	4

- 4. Convert from degrees to radians.
 - a) 30 degrees b) -20 degrees c) 315 degrees
- 5. Convert from radians to degrees.
 - a) $\frac{3\pi}{2}$ b) -4π c) $\frac{7\pi}{3}$
- 6. Find the complement and supplement.
 - a) 24 degrees b) $\frac{\pi}{3}$ radians c) $\frac{\pi}{6}$

7. A satellite in a circular orbit 1250 km above Earth makes one complete revolution every 110 minutes. What is its linear speed? Assume that Earth is a sphere of radius 6400 km.